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THREE-DIMENSIONAL CRACK ANALYSIS
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Abstract-A method is presented for the stress analysis of plane cracks of any shape in a stressed
three-dimensional linear elastic space, The approach utilizes a system of integral equations which is defined
over the crack area only, When these equations are solved for the unknown dislocations, all other quantities
related to the crack and the space can then be found. The text contains sections concerning equation system
derivation, numerical procedures, stress intensity factors, rectangular cracks, and earthquake control.

INTRODUCTION

Three-dimensional crack analysis has not developed as fully as its two-dimensional counterpart
because of its greater complexities. Consequently, very few exact analyses have been done, e.g.
the one by Sneddon[t]. There are a number of approximate solutions such as the Thresher and
Smith paper[2J, but they commonly depend on exact results to some extent. These kinds of
studies necessarily lack a general and unified approach.

Recently, however, the so-called boundary integral equation method has achieved some
vogue in solving three-dimensional elastostatic problems. It can be applied to the problems
considered here, but since a mixed boundary value problem over an infinite domain must be
addressed, the solution becomes very awkward. It is found, instead, that the basic equations of
that method, when suitably manipulated, provide integral expressions for the crack face stresses.
The approach is similar in spirit, if not in detail, to the work of Sanders and his students [3J
whereby shell cutout problems are solved by means of integral equations which are defined only
over the edge of the cutout or over the crack.

When the stress boundary conditions are applied to the integrals, a system of integral
equations is formed in which the unknown functions are the dislocations across the crack.
Numerical solutions for the stress intensity factors will be provided for the rectangular crack
under various loadings, and these will be applied to an idea which has been proposed to control
earthquakes.

THE INTEGRAL EQUATIONS

Consider an infinite elastic space with Cartesian coordinates ~/. In the notation of Cruse [4J,
the j-th component of the traction on a surface with unit normal vector nk (~) which is caused by a
unit point load in the i-th direction at the point X is:

where

K::: (1-2v)/8'lT(1- v), r = I~ - Xl, 5/j

is the Kronecker delta, v is Poisson's ratio, and differentiations are with respect to ~. The
corresponding j-th component of the displacement is:

UI(~ X) _1_[(3-4v)5/j+~]
., 4'lTGr 4(1 - v) 4(1 - v) .

G is the shear modulus. These comprise the Kelvin solution for the unit point load.
Suppose that a body occupies part of this space and is bounded by the surface A. By using the

tThis work was done while the author was a graduate student at Harvard University.
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322 1. WEAVER

Kelvin solution, it follows from the application of the Betti-Rayleigh theorem that:

(I)

for points X inside A. The vectors Uj(~) and !J(~) are the displacements and tractions,
respectively, on the surface.

Let A consist of an external surface and an internal one (of a cavity), and assume that the
surface stresses only are specified. It is convenient to subtract out of this stress field the field
which is produced by applied stresses on the outer surface in the absence of the cavity, The
so-called reduced problem is, therefore, load-free except internally where the originally loads are
now modified. Thus, in the limit as A (outer) grows without bound, eqns (1) remain the same in
form, while A denotes the inner surface only. It must be kept in mind later that the complete
solution is the sum of the reduced problem and the deleted one.

A plane crack of any shape is a special kind of cavity which is characterized by two plane
surfaces A "', which are located at 6 = 0"'. The applied stresses on them are assumed to be
symmetrical across ~3 =0, i.e. that tt =-ti. It is also noted that T~ =- Tij and U~ = Uij, so that
eqn (1) can be rewritten as:

(2)

where I1Uj = Ut - Ui. The unit normal vector on A + is nt = - 5i3 •

Since we are concerned with a stress boundary value problem, the strains must be obtained
from (2) and inserted into Hooke's law,

That is, we must find:

(3a)

and

(3b)

Equation (2) may be differentiated under the integral as long as X does not fall upon A +

However, the limits do not exist as X~ A +, and measures in the form of integrations by parts
must be taken before the limit process can proceed. For example,

f A aT~ dA f A aT~ f A T+ dAU;,a = - A+ J.J.Uj aXa = A+ J.J.Uj a~a =- A+ J.J.Uj,a Ij .

Thus,

U~a = - lim f I1Uj.aTtj dA,
X--A+ A +

<X3-0 +)

where

T + -K[X3 (., 3r'lr,j)., .,]
Ij = 7 r aij + 1-211 + aj3r'i - al3r,j

and r,1 = (~i - Xd/r. The other somewhat complex and lengthy strain derivations, as used in (3a)
and (3b), can be found in Weaver[9].

The collective results are the desired integral equations:

_ E(1- 211) f [8 _ ., +3r,ar'fJr,..,] I1UfJ..., dA
(Ta3 - 16 (1 2) (Jar,.., aa..,r'fJ 1 2 2

7T -II A+ - II r
(4a)
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_ E f r,a /lU3,a dA
(Tn - 8 (1 2) 27T -V A+ r
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(4b)

The slash through the integral sign means that the Cauchy principal value of the integral must be
taken, and E is Young's Modulus. Because of the assumed loading, the shear problem uncouples
from the normal stress problem. These equations are valid for all X not on the boundary of the
crack or on singularities of the applied loading. The latter condition implies that /lUi,a are
continuous.

THE NUMERICAL PROCEDURE

It is sufficient to outline the numerical solution to eqn (4b) since the same holds for (4a) as well.
Write (4b) as

(5)

where (T is the applied stress, K' is a constant, Ka are the kernel functions, and f is the unknown.
Now let eqn (5) be defined over the rectangle I~II < c, 1~21 < B. In nondimensional form (with bars
removed) it becomes:

with

fa = ~a Ia. The a is a reference length.

For an approximate solution, A + is divided into a mesh of smaller rectangles so that

(6)

Appropriate forms of f over each Ai,i must include two important features, namely that (1) they
be differentiable, (or have the proper form if load discontinuities exist). (2) They vanish in the
edge meshes like the square root of the normal distance from the crack edge (Kassir and Sih[5]).

Thus, when f is denoted by Al at each mesh centroid (XI" X 2J the simplest approximations
over the interior meshes appear to be (for continuous loads)

i+l 1+1

f(~h6) L L amn(~h 6)fm.n
m=i-l "=j-l

for which

;+. j ......

IT (~I-XI.) IT (~2-X2,)
1=;-1 l=j-l
k~m J~n

i+. 1+1

IT (XI", - XI.) n (X2• - X 2,)
k-;-1 I=j-l
k;ll'!m l~n

In the side meshes, but not including the corners, a sample approximation is:

;+. N z

f(~" ~2) = y'(B - ~2) L L amn(~h ~2)fm.n/y'(B - X 2.)
m=i-l n-N2-1



324

with

1. WEAVER

i+1 N 2n (~I-XI.) n (6-X2,)
k=i-l I=N2-1
k"l"m l~n

i+1 N 2

2: (Xlm - XI.) n (X2n - X2,)
k=i-I I=N2-1
k~m l#n

And finally, on one of the corner meshes the approximation is:

where

2 2n (~I - XI.) n(~2 - X 2,)
k-I I_I
k":m l'iJ'l!n

am"(~b ~2) = ---------
2 2n (Xlm - XI.) n(X2n - X 2,)

k-I I-I
kr'"m l;l!n

These expressions for I are inserted into eqn (6), and the integrations are performed in any
convenient manner. Thus, when (Xb X 2) is made to coincide with each of the mesh centroids, an
algebraic system of equations for 1m," is derived, and the overall approximation to I(~b 6) is
established through the computer-aided inversion.

STRESS INTENSITY FACTORS

Stress intensity factors are related to the displacements near the edge of the crack. Kassir and
Sih have shown that the two-dimensional equations for the plane strain crack hold for the
three-dimensional smoothed edge crack also. Thus from Rice [6],

UJ =~ (2:) 1/2 sin (1) [4(1- v)- 2cos2 (1)]
for the opening mode, where (r, 4J) is a local polar coordinate system in a plane perpendicular to
the edge. On the crack face, 4J = 7T' so that

_ K r(f)I/22(1 - v)
UJ = G(2a7T')1/2 ,

in nondimensional notation.
Furthermore, in abbreviation

where HI, which is evaluated on the edge, is part of the numerical solution previously outlined.
By equating these two expressions for uJ,

Kr(~b ~2) _ G(2)1/2Hr(~b ~2; Un = -1)
(a7T') 1/2 - 4(1-v)

It follows also, that for (Tn = - P (constant)
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Note the absense of Poisson's ratio. For the shear problem in which the applied stresses are
0"13 = p, and 0"23 = 0, the more important stress intensity factors are:

KII (± C, ~2) 23/2 7THII (± C, ~2; (113 = 1)
p(a7T)1/2 - 1-21'

KIll(~\' ± B) _ 2312
7T(l- v)HIlI (~I, ± B; (113 = 1)

p(a7T)1/2 - 1- 2v

Again, Hll and HIlI are parts of the numerical solution, and v does appear because of the
different constant in eqns (4a).

RESULTS FOR RECTANGULAR CRACK

The accuracy of the numerical solution could be tested in three different ways. The first was
to affirm apparent convergence by using a sequence of finer meshes and to look for obvious
irregularities. The second way was to check for the known plane strain results in the center of a
long crack. And the third consisted of cOfifirming predictions made by Budiansky [7]. He showed
that by applying a three-dimensional form of the J-integral (Budiansky and Rice [8]) to a long
crack, C/B ~ 1, under uniform tension

where the bar symbolizes the mean square. In the case of uniform shear parallel to the track
(C/B ~ 1),

1[( K ll )2 + ( KIll )2]/ = 1V PY(7TB) PY(7TB) on end y[2(l-v)]'

and for the same shear but C/B ~ 1,

1[( Kll )2 ( KIll )2]/ 1(1- v)V PV(7TC) + PV(7TC) on end = V -2- .

In the actual computations, advantage was taken of the double symmetry (or antisymmetry) in
each problem, and the shorter crack dimension was uniformly divided. The meshes in the longer

Fig. I.
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direction .:1~I" say, were made nonuniform with .:1~11 = A.:1~I/+' such that the corner meshes were
square and A did not exceed 1/2.

In the opening mode, 100 unknowns (or less) distributed over the quarter crack were found
sufficient to satisfy the above checks with 1% error. Figure I shows the displacements for CIB = 1
and, typically, CIB = 3. Figure 2 is a plot of KI lpv(1TB) against position on the shorter side
while Fig. 3 is the same but on the other side. It is evident from these that little chance occurs
when C IBis larger than 3. Furthermore, end effects extending along the crack on the order of the
width can be seen in Fig. 3. The central zone strain field is two-dimensional, and KIIp v(1TB) = 1
as expected.

Osr- __
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Fig. 2.
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When the load was shear, a total of 111 unknowns were needed to bring the end root mean
squares to within I% of their predicted values. Generally the dominant response under
shear is the displacement parallel to it. Transverse displacements never exceeded 1/10 of these,
and usually they were much less. Qualitatively, the results are similar to the opening mode case.
Figures 4-7 show KII and KIll where they were larger on any given side.

Plots of U I are not given because they are nearly identical to those in Fig. 1.
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EARTHQUAKE CONTROL

The preceeding methods can be applied quantitatively to the study of injecting water into an
earthquake fault which would be done in order to induce controlled slip. In this way, accumulated
strain energy is carefully released, and the earthquake danger is averted.

The fault zone is modeled as a rectangular crack (as above) under the action of applied shear
stress, the tectonic stress. The full space is used for convenience, but it can be seen that there are
no shear stresses on the perpendicular plane (earth's surface) which divides the crack and space
in two.

Injected water has the effect of reducing the fault's strength so that slippage eventually
occurs, and a quasi-static crack (assumed rectangular) begins to grow. The depth, or width, of it is
held fixed, and the relationship between the stresses and geometry is sought whereby the stress

J
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singularities at the ends, and of necessity only at the middles of the ends, are suppressed. This is
found by determining the stress intensity factors for the different stress systems and summing
them to zero.

Figure 8 illustrates the stresses acting upon the crack where To is the tectonic stress, TL is the
frictional stress over the water-weakened area AL , and TF is the natural frictional stress.
Suppression of the stress singularity is attempted only at the midpoint Q. To ease matters
somewhat, this problem is replaced by the superposition of two other problems as indicated in
Fig. 9, the first of which has already been solved. Furthermore, the second of these is idealized by
using an equivalent concentrated line load, since Q will be reasonably insensitive to the stress
distribution over AL if the crack is not too short. It also eliminates CL as a parameter. In this last
problem, the displacement singularity UI::= 2(1- v2)Pin 1~II/7rE must be appended to the
approximate solution given previously, and the integral equations are otherwise homogeneous.

Figures 10-12 show the stress intensity factors of interest. The conditions for crack arrest
are:

KW(Q) = KW(Q) and KW(Q) = KW(Q).

From these it follows that:

CIB :;; F(w) where w

Thus, the stress drop by water injection, (TF - Td, and the "margin of safety", (Tp - T(», are

!~-~J
\~,----------

TF - TO

+
_.- -

q
TF -li.

Problem I

Problem 2

Fig. 9.
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CJB =I. C/B =2

Fig. 14.

explicitly defined. Figure 13 contains the final results for both CL IB = I and the line load
equivalent, and Fig. 14 shows corresponding dislocations.

As can be seen, C IBis a rather slowly increasing function of w. This means that the margin of
safety must be very small to induce sizeable slippage. In fact, if 1'F = 1.011'0' TL = 0 and CLIB = 1,
w = 101 and CIB "" 6, which is not great. Moreover, most dislocation occurs over AL , so that the
phenomenon is really quite local in nature. These conclusions may be of interest to those who
would experiment with existing faults.

Further details concerning all aspects of this paper plus the equations for the half space can be
found in Weaver[9]. A referee has pointed out the paper by Guidera and Lardner[lO] for its
complementary contributions.
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